Metadata of the chapter that will be visualized in SpringerLink

Book Title	Lie Theory and Its Applications in Physics		
Series Title			
Chapter Title	Nested Bethe Ansatz for RTT–Algebra of $U_q(\operatorname{sp}(2n))$ Type		
Copyright Year	2020		
Copyright HolderName	Springer Nature Singapore Pte Ltd.		
Corresponding Author	Family Name	Burdík	
	Particle		
	Given Name		
	Prefix		
	Suffix		
	Role		
	Division	Faculty of Nuclear Sciences and Physical Engineering	
	Organization	CTU	
	Address	Trojanova 13, Prague, Czech Republic	
	Email	cestmir.burdik@fjfi.cvut.cz	
Author	Family Name	Navrátil	
	Particle		
	Given Name	0.	
	Prefix		
	Suffix		
	Role		
	Division	Faculty of Transportation Sciences	
	Organization	CTU	
	Address	Na Florenci 25, Prague, Czech Republic	
	Email	navraond@fd.cvut.cz	
Abstract	We study the highest weight representations of the RTT-algebras for the R-matrix of ${}^{sp}_{q}(2n)$ type nested algebraic Bethe ansatz. It is a generalization of our study for R-matrix of ${}^{sp(2n)}$ and ${}^{so(2n)}$ t		

Nested Bethe Ansatz for RTT-Algebra of $U_q(\operatorname{sp}(2n))$ Type

Č. Burdík and O. Navrátil

- Abstract We study the highest weight representations of the RTT-algebras for the
- R-matrix of $\operatorname{sp}_a(2n)$ type by the nested algebraic Bethe ansatz. It is a generalization
- of our study for R-matrix of sp(2n) and so(2n) type.

4 1 Introduction

- 5 The formulation of the quantum inverse scattering method, or algebraic Bethe ansatz,
- ₆ by the Leningrad school [1] provides eigenvectors and eigenvalues of the transfer
- 7 matrix. The latter is the generating function of the conserved quantities of a large
- 8 family of quantum integrable models. The transfer matrix eigenvectors are con-
- structed from the representation theory of the RTT-algebras. In order to construct
- these eigenvectors, one should first prepare Bethe vectors, depending on a set of
 - these eigenvectors, one should mat propute Sente vectors, depending on a set of
- complex variables. The first formulation of the Bethe vectors for the gl(n)-invariant
- models was given by P.P. Kulish and N.Yu. Reshetikhin in [2] where the nested alge-
- braic Bethe ansatz was introduced. These vectors are given by recursion on the rank
- of the algebra. Our calculation is some q-generalization of the construction which
 - we published in recent works [3, 4, 6] for the non-deformed case of sp(2n), so(2n)
- and sp(4).

15

17

18

Our construction of Bethe vectors used the new RTT-algebra $\tilde{\mathcal{A}}_n$ which is defined in Sect. 3 and is not the RTT-subalgebra of $\operatorname{sp}_a(2n)$.

Č. Burdík (⊠)

Faculty of Nuclear Sciences and Physical Engineering,

CTU, Trojanova 13, Prague, Czech Republic

e-mail: cestmir.burdik@fjfi.cvut.cz

O. Navrátil

Faculty of Transportation Sciences, CTU, Na Florenci 25, Prague, Czech Republic

e-mail: navraond@fd.cvut.cz

© Springer Nature Singapore Pte Ltd. 2020

V. Dobrev (ed.), Lie Theory and Its Applications in Physics,

Springer Proceedings in Mathematics & Statistics 335,

https://doi.org/10.1007/978-981-15-7775-8_22

Æ

48985_1_En_22_Chapter 📝 TYPESET 🔙 DISK 🔄 LE 📝 CP Disp.:6/8/2020 Pages: xxx Layout: T1-Standard

1

AQ1

25

26

27

This algebra has two RTT-subalgebras of $gl_a(n)$ type and the study of the nested Bethe ansatz for this RTT-algebra is in progress. The simplest case for n = 2 was really solved and we will publish in the next paper.

Our construction of Bethe vectors is in any sense a generalization of Reshetikhin's results [7]. Another approach to the nested Bethe ansatz for very special representations of RTT-algebras of sp(2n) type was given by Martin and Ramas [8].

In this note, due to the lack of space, we omit the proofs of many claims. Mostly, it is possible to prove them similarly as the corresponding claims in [6].

Basic Definitions and Notation

Let indices go trough the set $\{\pm 1, \pm 2, \dots, \pm n\}$. We will denote by \mathbf{E}_i^k the matrices 28 that have all elements equal to zero with the exception of the element on the i-th 29 row and k-th column that is equal to one. Then $I = \sum_{k=1}^{n} \mathbf{E}_{k}^{k}$ is the unit matrix and 30

 $\mathbf{E}_{i}^{k}\mathbf{E}_{r}^{s}=\delta_{r}^{k}\mathbf{E}_{i}^{s}$ is valid. 31

We will consider the R-matrix of $U_q(sp(2n))$ which has the shape

$$\begin{split} \mathbf{R}(x) &= \frac{1}{\alpha(x)} \Big(\sum_{i,k;\, i \neq \pm k} \mathbf{E}_i^i \otimes \mathbf{E}_k^k + f(x) \sum_i \mathbf{E}_i^i \otimes \mathbf{E}_i^i \\ &+ f(x^{-1}q^{-n-1}) \sum_i \mathbf{E}_i^i \otimes \mathbf{E}_{-i}^{-i} + g(x) \sum_{k < i} \mathbf{E}_k^i \otimes \mathbf{E}_i^k - g(x^{-1}) \sum_{i < k} \mathbf{E}_k^i \otimes \mathbf{E}_i^k \\ &- g(xq^{n+1}) \sum_{k < i} q^{k-i} \epsilon_i \epsilon_k \mathbf{E}_k^i \otimes \mathbf{E}_{-k}^{-i} + g(x^{-1}q^{-n-1}) \sum_{i < k} q^{k-i} \epsilon_i \epsilon_k \mathbf{E}_k^i \otimes \mathbf{E}_{-k}^{-i} \Big) \end{split}$$

where $\epsilon_i = \text{sign}(i)$ and

$$f(x) = \frac{xq - x^{-1}q^{-1}}{x - x^{-1}}, \quad g(x) = \frac{x(q - q^{-1})}{x - x^{-1}}, \quad \alpha(x) = 1 + \frac{q - q^{-1}}{x - x^{-1}}.$$

This R-matrix satisfies the Yang-Baxter equation

$$\mathbf{R}_{1,2}(x)\mathbf{R}_{1,3}(xy)\mathbf{R}_{2,3}(y) = \mathbf{R}_{2,3}(y)\mathbf{R}_{1,3}(xy)\mathbf{R}_{1,2}(x)$$

and is invertible.

The RTT-algebra of $U_q(\operatorname{sp}(2n))$ type is an associative algebra \mathcal{A} with unit, which is generated by $T_k^i(x)$, for which the monodromy operator

$$\mathbf{T}(x) = \sum_{i,k=-n}^{n} \mathbf{E}_{i}^{k} \otimes T_{k}^{i}(x)$$

fulfills the RTT-equation

$$\mathbf{R}_{1,2}(xy^{-1})\mathbf{T}_1(x)\mathbf{T}_2(y) = \mathbf{T}_2(y)\mathbf{T}_1(x)\mathbf{R}_{1,2}(xy^{-1})$$
.

From the invertibility of the R-matrix we have that the operator

$$H(x) = \text{Tr}(\mathbf{T}(x)) = \sum_{i=-n}^{n} T_i^i(x)$$

fulfills the equation H(x)H(y) = H(y)H(x) for any x and y.

We suppose that in the representation space W of the RTT-algebra A there exists a vacuum vector $\omega \in \mathcal{W}$, for which $\mathcal{W} = \mathcal{A}\omega$ and

$$T_k^i(x)\omega = 0$$
 pro $i < k$, $T_i^i(x)\omega = \lambda_i(x)\omega$ pro $i = \pm 1, \pm 2, \dots, \pm n$.

In the vector space $W = A\omega$, we will look for eigenvectors of H(x).

RTT-Algebra $\tilde{\mathcal{A}}_n$ 3

In the RTT–algebra \mathcal{A} , we have the RTT–subalgebras $\mathcal{A}^{(+)}$ and $\mathcal{A}^{(-)}$ that are generated by the elements $T_k^i(x)$ and $T_{-k}^{-i}(x)$, where i, k = 1, 2, ..., n. First, we will study the subspace

$$\mathcal{W}_0 = \mathcal{A}^{(+)} \mathbf{A}^{(-)} \omega \subset \mathcal{W} = \mathcal{A} \omega$$
.

Lemma 1. For any i, k = 1, 2, ..., n and any $\Omega \in \mathcal{W}_0$ $T_k^{-i}(x)\Omega = 0$ is valid.

Lemma 2. If we denote

$$\mathbf{T}^{(+)}(x) = \sum_{i,k=1}^{n} \mathbf{E}_{i}^{k} \otimes T_{k}^{i}(x), \qquad \mathbf{T}^{(-)}(x) = \sum_{i,k=1}^{n} \mathbf{E}_{-i}^{-k} \otimes T_{-k}^{-i}(x),$$

then on the space W_0 for any ϵ_1 , $\epsilon_2 = \pm$ 37

$$\mathbf{R}_{1,2}^{(\epsilon_1,\epsilon_2)}(xy^{-1})\mathbf{T}_1^{(\epsilon_1)}(x)\mathbf{T}_2^{(\epsilon_2)}(y) = \mathbf{T}_2^{(\epsilon_2)}(y)\mathbf{T}_1^{(\epsilon_1)}(x)\mathbf{R}_{1,2}^{(\epsilon_1,\epsilon_2)}(xy^{-1}) \tag{1}$$

38

where

$$\mathbf{R}_{1,2}^{(+,+)}(x) = \frac{1}{f(x)} \left(\sum_{i,k=1; i \neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{k}^{k} + f(x) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{i}^{i} \right)$$

$$+ g(x) \sum_{1 \leq k < i \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{i}^{k} - g(x^{-1}) \sum_{1 \leq i < k \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{i}^{k} \right)$$

$$\mathbf{R}_{1,2}^{(-,-)}(x) = \frac{1}{f(x)} \left(\sum_{i,k=1; i \neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{-k}^{-k} + f(x) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{-i}^{-i} \right)$$

$$+ g(x) \sum_{1 \leq i < k \leq n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{-i}^{-k} - g(x^{-1}) \sum_{1 \leq k < i \leq n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{-i}^{-k} \right)$$

$$\begin{split} \mathbf{R}_{1,2}^{(+,-)}(x) &= \sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{-k}^{-k} + f(x^{-1}q) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{-i}^{-i} \\ &- g(xq^{-1}) \sum_{1 \leq k < i \leq n} q^{k-i} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{-k}^{-i} + g(x^{-1}q) \sum_{1 \leq i < k \leq n} q^{k-i} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{-k}^{-i} \\ &\mathbf{R}_{1,2}^{(-,+)}(x) = \sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{k}^{k} + f(x^{-1}q^{-n-1}) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{i}^{i} \\ &- g(xq^{n+1}) \sum_{1 \leq i < k \leq n} q^{i-k} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{k}^{i} + g(x^{-1}q^{-n-1}) \sum_{1 \leq k < i \leq n} q^{i-k} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{k}^{i} \end{split}$$

- is valid. 39
- **Proposition 1.** If we define 40

41
$$\tilde{\mathbf{R}}_{1,2}(x) = \mathbf{R}_{1,2}^{(+,+)}(x) + \mathbf{R}_{1,2}^{(+,-)}(x) + \mathbf{R}_{1,2}^{(-,+)}(x) + \mathbf{R}_{1,2}^{(-,-)}(x)$$
42
$$\tilde{\mathbf{T}}(x) = \mathbf{T}^{(+)}(x) + \mathbf{T}^{(-)}(x),$$

the RTT-equation

$$\tilde{\mathbf{R}}_{1,2}(xy^{-1})\tilde{\mathbf{T}}_{1}(x)\tilde{\mathbf{T}}_{2}(y) = \tilde{\mathbf{T}}_{2}(y)\tilde{\mathbf{T}}_{1}(x)\tilde{\mathbf{R}}_{1,2}(xy^{-1})$$

is valid on the space \mathcal{W}_0 . 43

Also, the R-matrix $\mathbf{R}(x)$ fulfills the Yang-Baxter equation

$$\tilde{\mathbf{R}}_{1,2}(x)\tilde{\mathbf{R}}_{1,3}(xy)\tilde{\mathbf{R}}_{2,3}(y) = \tilde{\mathbf{R}}_{2,3}(y)\tilde{\mathbf{R}}_{1,3}(xy)\tilde{\mathbf{R}}_{1,2}(x)$$

and has the inverse matrix

$$\left(\tilde{\mathbf{R}}_{1,2}(x) \right)^{-1} = \left(\mathbf{R}_{1,2}^{(+,+)}(x) \right)^{-1} + \left(\mathbf{R}_{1,2}^{(+,-)}(x) \right)^{-1} + \left(\mathbf{R}_{1,2}^{(-,+)}(x) \right)^{-1} + \left(\mathbf{R}_{1,2}^{(-,-)}(x) \right)^{-1}$$

where

$$\begin{split} & \left(\mathbf{R}_{1,2}^{(+,+)}(x) \right)^{-1} = \frac{1}{f(x^{-1})} \left(\sum_{i,k=1;\,i \neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{k}^{k} + f(x^{-1}) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{i}^{i} \right) \\ & - g(x) \sum_{1 \leq k < i \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{i}^{k} + g(x^{-1}) \sum_{1 \leq i < k \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{i}^{k} \right) \\ & \left(\mathbf{R}_{1,2}^{(-,-)}(x) \right)^{-1} = \frac{1}{f(x^{-1})} \left(\sum_{i,k=1;\,i \neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{-k}^{-k} + f(x^{-1}) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{-i}^{-i} \right) \\ & - g(x) \sum_{1 \leq i < k \leq n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{-i}^{-k} + g(x^{-1}) \sum_{1 \leq k < i \leq n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{-i}^{-k} \right) \\ & \left(\mathbf{R}_{1,2}^{(+,-)}(x) \right)^{-1} = \sum_{i,k=1;\,i \neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{-k}^{-k} + f(xq^{-n-1}) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{E}_{-i}^{-i} \\ & + g(xq^{-n-1}) \sum_{1 \leq k < i \leq n} q^{i-k} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{-k}^{-i} - g(x^{-1}q^{n+1}) \sum_{1 \leq i < k \leq n} q^{i-k} \mathbf{E}_{k}^{i} \otimes \mathbf{E}_{-k}^{-i} \\ & \left(\mathbf{R}_{1,2}^{(-,+)}(x) \right)^{-1} = \sum_{i,k=1;\,i \neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{k}^{k} + f(xq) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{E}_{i}^{i} \\ & + g(xq) \sum_{1 \leq i < k \leq n} q^{k-i} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{k}^{i} - g(x^{-1}q^{-1}) \sum_{1 \leq k < i \leq n} q^{k-i} \mathbf{E}_{-k}^{-i} \otimes \mathbf{E}_{k}^{i} \end{aligned}$$

The validity of the RTT–equation is Lemma 2. The Yang–Baxter equation that is equivalent to the equations

$$\mathbf{R}_{1,2}^{(\epsilon_{1},\epsilon_{2})}(x)\mathbf{R}_{1,3}^{(\epsilon_{1},\epsilon_{3})}(xy)\mathbf{R}_{2,3}^{(\epsilon_{2},\epsilon_{3})}(y) = \mathbf{R}_{2,3}^{(\epsilon_{2},\epsilon_{3})}(y)\mathbf{R}_{1,3}^{(\epsilon_{1},\epsilon_{3})}(xy)\mathbf{R}_{1,2}^{(\epsilon_{1},\epsilon_{2})}(x)$$
(2)

and the conditions for the inverse *R*-matrix, i.e. the relations

$$\mathbf{R}_{1,2}^{(\epsilon_1,\epsilon_2)}(x) \left(\mathbf{R}_{1,2}^{(\epsilon_1,\epsilon_2)}(x)\right)^{-1} = \mathbf{I}_{\epsilon_1} \otimes \mathbf{I}_{\epsilon_2}, \quad \text{where} \quad \mathbf{I}_+ = \sum_{i=1}^n \mathbf{E}_i^i, \quad \mathbf{I}_- = \sum_{i=1}^n \mathbf{E}_{-i}^i,$$

- can be shown by direct calculation.
- **Definition.** We denote the RTT-algebra defined by the R-matrix $\tilde{\mathbf{R}}(x)$ as $\tilde{\mathcal{A}}_n$.

We find out by the standard procedure from the RTT–equation (1) that in the RTT–algebra $\tilde{\mathcal{A}}_n$ mutually commutate not only the operators $\tilde{H}(x)$ and $\tilde{H}(y)$, where

$$\tilde{H}(x) = \text{Tr}_{(+,-)}(\tilde{\mathbf{T}}(x)) = \text{Tr}_{+}(\mathbf{T}^{(+)}(x)) + \text{Tr}_{-}(\mathbf{T}^{(-)}(x)) = \sum_{i=1}^{n} (T_{i}^{i}(x) + T_{-i}^{-i}(x))$$

but also all operators $\tilde{H}^{(\pm)}(x)$ a $\tilde{H}^{(\pm)}(y)$, where

$$\begin{split} \tilde{H}^{(+)}(x) &= \mathrm{Tr}_+ \big(\mathbf{T}^{(+)}(x) \big) = \sum_{i=1}^n T_i^i(x) \,, \\ \tilde{H}^{(-)}(x) &= \mathrm{Tr}_- \big(\mathbf{T}^{(-)}(x) \big) = \sum_{i=1}^n T_{-i}^{-i}(x) \,. \end{split}$$

General Shape of Eigenvectors

Let $\mathbf{u} = (u_1, u_2, \dots, u_M)$ be an ordered set of mutually different complex numbers. We will look for eigenvectors in the form

$$\mathfrak{V}(\mathbf{u}) = \sum_{i_1,\dots,i_M,k_1,\dots,k_M=1}^n T^{i_1}_{-k_1}(u_1) T^{i_2}_{-k_2}(u_2) \dots T^{i_M}_{-k_M}(u_M) \Phi^{k_1,k_2,\dots,k_M}_{i_1,i_2,\dots,i_M}$$

where $\Phi_{i_1,i_2,...,i_M}^{k_1,k_2,...,k_M} \in \mathcal{W}_0$. Let us denote

$$\mathbf{B}(u) = \sum_{i,k=1}^{n} \mathbf{e}_{i} \otimes \mathbf{f}^{-k} \otimes T_{-k}^{i}(u) \in \mathcal{V}_{+} \otimes \mathcal{V}_{-}^{*} \otimes \mathcal{A}$$

where \mathbf{e}_i is the basis of the space \mathcal{V}_+ and \mathbf{f}^{-k} is the basis of the space \mathcal{V}_-^* and define

$$\mathbf{B}_{1,\dots,M}(\mathbf{u}) = \mathbf{B}_{1}(u_{1}) \otimes \mathbf{B}_{2}(u_{2}) \otimes \dots \otimes \mathbf{B}_{M}(u_{M})$$

$$= \sum_{i_{1},\dots,k_{M}}^{n} \mathbf{e}_{i_{1}} \otimes \dots \otimes \mathbf{e}_{i_{M}} \otimes \mathbf{f}^{-k_{1}} \otimes \dots \otimes \mathbf{f}^{-k_{M}} \otimes T_{-k_{1}}^{i_{1}}(u_{1}) \dots T_{-k_{M}}^{i_{M}}(u_{M})$$

If \mathbf{f}^r is the dual basis with respect to \mathbf{e}_i in the space \mathcal{V}_+^* and \mathbf{e}_{-s} is the dual basis with respect to \mathbf{f}^{-k} in the space \mathcal{V}_{-} and we denote

$$\mathbf{\Phi} = \sum_{r_1, \dots, r_M, s_1, \dots, s_M} \mathbf{f}^{r_1} \otimes \dots \otimes \mathbf{f}^{r_M} \otimes \mathbf{e}_{-s_1} \otimes \dots \otimes \mathbf{e}_{-s_M} \otimes \mathbf{\Phi}^{s_1, \dots, s_M}_{r_1, \dots, r_M}$$

we can write the general shape of Bethe vectors in the form

$$\mathfrak{V}(\mathbf{u}) = \langle \mathbf{B}_{1,\dots,M}(\mathbf{u}), \, \mathbf{\Phi} \rangle.$$

Commutation Relations $T_0^{(\pm)}(x)B_{1,...,M}(u)$

On the space $\mathcal{V}_0 \otimes \mathcal{V}_{1_+}^* \otimes \mathcal{V}_{1_-} \otimes \mathcal{A}$ we define

$$\widehat{\mathbf{T}}_{0;1}^{(+)}(x;u) = \left(\widehat{\mathbf{R}}_{0,1^*}^{(+,+)}(xu^{-1})\right)^{-1}\mathbf{T}_0^{(+)}(x)\widehat{\mathbf{R}}_{0,1}^{(+,-)}(xu^{-1})$$

$$\widehat{\mathbf{T}}_{0:1}^{(-)}(x;u) = \left(\widehat{\mathbf{R}}_{0,1^*}^{(-,+)}(xu^{-1})\right)^{-1}\mathbf{T}_0^{(-)}(x)\widehat{\mathbf{R}}_{0,1}^{(-,-)}(xu^{-1})$$

where

$$\begin{split} \left(\widehat{\mathbf{R}}_{0,1^*}^{(+,+)}(x)\right)^{-1} &= \frac{1}{f(x^{-1})} \left(\sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{F}_{k}^{k} \otimes \mathbf{I}_{-} + f(x^{-1}) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{F}_{i}^{i} \otimes \mathbf{I}_{-} \right. \\ &+ g(x^{-1}) \sum_{1 \leq i < k \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{F}_{k}^{k} \otimes \mathbf{I}_{-} - g(x) \sum_{1 \leq k < i \leq n} \mathbf{E}_{k}^{i} \otimes \mathbf{F}_{k}^{k} \otimes \mathbf{I}_{-} \right) \\ &\left(\widehat{\mathbf{R}}_{0,1^*}^{(-,+)}(x)\right)^{-1} &= \sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{F}_{k}^{k} \otimes \mathbf{I}_{-} + f(xq) \sum_{1 \leq k < i \leq n} \mathbf{E}_{-i}^{i} \otimes \mathbf{F}_{i}^{i} \otimes \mathbf{I}_{-} \\ &+ g(xq) \sum_{1 \leq i < k \leq n} q^{k-i} \mathbf{E}_{-k}^{-i} \otimes \mathbf{F}_{k}^{i} \otimes \mathbf{I}_{-} \\ &- g(x^{-1}q^{-1}) \sum_{1 \leq k < i \leq n} q^{k-i} \mathbf{E}_{-k}^{-i} \otimes \mathbf{F}_{k}^{i} \otimes \mathbf{I}_{-} \\ &\left(\widehat{\mathbf{R}}_{0,1}^{(+,-)}(x)\right) = \sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-k} + f(x^{-1}q) \sum_{i=1}^{n} \mathbf{E}_{i}^{i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-i}^{-i} \\ &+ g(x^{-1}q) \sum_{1 \leq i < k \leq n}^{n} q^{k-i} \mathbf{E}_{k}^{i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &- g(xq^{-1}) \sum_{1 \leq k < i \leq n}^{n} q^{k-i} \mathbf{E}_{k}^{i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &\left(\sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} + f(x) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-i}^{-i} \\ &\left(\sum_{i,k=1;\,i\neq k}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-k} + f(x) \sum_{i=1}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-i}^{-i} \\ &+ g(x) \sum_{1 \leq i < k \leq n}^{n} \mathbf{E}_{-i}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-i}^{-k} - g(x^{-1}) \sum_{1 \leq k < i \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &+ g(x) \sum_{1 \leq i < k \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} - g(x^{-1}) \sum_{1 \leq k < i \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &+ g(x) \sum_{1 \leq i < k \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} - g(x^{-1}) \sum_{1 \leq k < i \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &+ g(x) \sum_{1 \leq i < k \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} - g(x^{-1}) \sum_{1 \leq k < i \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \\ &+ g(x) \sum_{1 \leq i < k \leq n}^{n} \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{+}^{*} \otimes \mathbf{E}_{-k}^{-i} \otimes \mathbf{I}_{$$

Lemma 3. In the RTT-algebra of $U_q(\operatorname{sp}(2n))$ type the relations 52

$$\mathbf{T}_{0}^{(+)}(x)\left\langle \mathbf{B}_{1}(u), \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right\rangle = f(x^{-1}u)\left\langle \mathbf{B}_{1}(u), \widehat{\mathbf{T}}_{0;1}^{(+)}(x; u) \left(\mathbf{I} \otimes \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right) \right\rangle$$

$$+ g(xu^{-1})\left\langle \mathbf{B}_{1}(x), \widehat{\mathbf{T}}_{0;1}^{(+)}(u; u) \left(\mathbf{I} \otimes \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right) \right\rangle$$

$$\mathbf{T}_{0}^{(-)}(x)\left\langle \mathbf{B}_{1}(u), \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right\rangle = f(xu^{-1})\left\langle \mathbf{B}_{1}(u), \widehat{\mathbf{T}}_{0;1}^{(-)}(x; u) \left(\mathbf{I} \otimes \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right) \right\rangle$$

$$- g(xu^{-1}))\left\langle \mathbf{B}_{1}(x), \widehat{\mathbf{T}}_{0;1}^{(-)}(u; u) \left(\mathbf{I} \otimes \mathbf{f}^{r} \otimes \mathbf{e}_{-s} \right) \right\rangle$$

are valid. 58

51

For ordered M-tuples $\mathbf{u} = (u_1, \dots, u_M)$, let \overline{u} denote the set $\overline{u} = \{u_1, \dots, u_M\}$. We define

$$\mathbf{u}_{k} = (u_{1}, \dots, u_{k-1}, u_{k+1}, \dots, u_{M}),
\overline{u}_{k} = \overline{u} \setminus \{u_{k}\} = \{u_{1}, \dots, u_{k-1}; u_{k+1}, \dots, u_{M}\},
F(x; \overline{u}^{-1}) = \prod_{k=1}^{M} f(xu_{k}^{-1}), \qquad F(x^{-1}, \overline{u}) = \prod_{k=1}^{M} f(x^{-1}u_{k}).$$

59 and introduce operators

$$\widehat{\mathbf{T}}_{0;1,\dots,M}^{(+)}(x;\mathbf{u}) = \left(\widehat{\mathbf{R}}_{0,1^*}^{(+,+)}(xu_1^{-1})\right)^{-1} \dots \left(\widehat{\mathbf{R}}_{0,M^*}^{(+,+)}(xu_M^{-1})\right)^{-1} \mathbf{T}_0^{(+)}(x)$$
61
$$\widehat{\mathbf{R}}_{0,M}^{(+,-)}(xu_M^{-1}) \dots \widehat{\mathbf{R}}_{0,1}^{(+,-)}(xu_1^{-1})$$
62
$$\widehat{\mathbf{T}}_{0;1,\dots,M}^{(-)}(x;\mathbf{u}) = \left(\widehat{\mathbf{R}}_{0,1^*}^{(-,+)}(xu_1^{-1})\right)^{-1} \dots \left(\widehat{\mathbf{R}}_{0,M^*}^{(-,+)}(xu_M^{-1})\right)^{-1} \mathbf{T}_0^{(-)}(x)$$
63
$$\widehat{\mathbf{R}}_{0,M}^{(-,-)}(xu_M^{-1}) \dots \widehat{\mathbf{R}}_{0,1}^{(-,-)}(xu_1^{-1})$$
64
$$\mathbf{B}_{k;1,\dots,M}(x;\mathbf{u}_k) = \mathbf{B}_k(x) \otimes \mathbf{B}_1(u_1) \otimes \dots \otimes \mathbf{B}_{k-1}(u_{k-1})$$

$$\otimes \mathbf{B}_{k+1}(u_{k+1}) \otimes \dots \otimes \mathbf{B}_M(u_M)$$

Proposition 2. The following relationships are applied:

$$\begin{aligned} \mathbf{T}_{0}^{(+)}(x) \left\langle \mathbf{B}_{1,\dots,M}(\mathbf{u}), \mathbf{\Phi} \right\rangle &= F(x^{-1}; \overline{u}) \left\langle \mathbf{B}_{1,\dots,M}(\mathbf{u}), \widehat{\mathbf{T}}_{0;1,\dots,M}^{(+)}(x; \mathbf{u}) \mathbf{\Phi} \right\rangle \\ &+ \sum_{u_{k} \in \overline{u}} g(x u_{k}^{-1}) F(u_{k}^{-1}; \overline{u}_{k}) \left\langle \mathbf{B}_{k;1,\dots,M}(x; \mathbf{u}_{k}), \right. \\ & \left. \left(\widehat{\mathbf{R}}_{1^{*},\dots,k^{*}}^{(+,+)}(\mathbf{u}) \right)^{-1} \widehat{\mathbf{R}}_{1,\dots,k}^{(-,-)}(\mathbf{u}) \widehat{\mathbf{T}}_{0;1,\dots,M}^{(+)}(u_{k}; \mathbf{u}) \mathbf{\Phi} \right\rangle \\ &\mathbf{T}_{0}^{(-)}(x) \left\langle \mathbf{B}_{1,\dots,M}(\mathbf{u}), \mathbf{\Phi} \right\rangle &= F(x; \overline{u}^{-1}) \left\langle \mathbf{B}_{1,\dots,M}(\mathbf{u}), \widehat{\mathbf{T}}_{0;1,\dots,M}^{(-)}(x; \mathbf{u}) \mathbf{\Phi} \right\rangle \\ &- \sum_{u_{k} \in \overline{u}} g(x u_{k}^{-1}) F(u_{k}; \overline{u}_{k}^{-1}) \left\langle \mathbf{B}_{k;1,\dots,M}(x; \mathbf{u}_{k}), \right. \\ & \left. \left(\widehat{\mathbf{R}}_{1^{*},\dots,k^{*}}^{(+,+)}(\mathbf{u}) \right)^{-1} \widehat{\mathbf{R}}_{1,\dots,k}^{(-,-)}(\mathbf{u}) \widehat{\mathbf{T}}_{0;1,\dots,M}^{(-)}(u_{k}; \mathbf{u}) \mathbf{\Phi} \right\rangle \end{aligned}$$

69 where

68

$$\widehat{\mathbf{R}}_{1^*,...,k^*}^{(+,+)}(\mathbf{u}) = \widehat{\mathbf{R}}_{(k-1)^*,k^*}^{(+,+)}(u_{k-1}u_k^{-1}) \dots \widehat{\mathbf{R}}_{2^*,k^*}^{(+,+)}(u_2u_k^{-1}) \widehat{\mathbf{R}}_{1^*,k^*}^{(+,+)}(u_1u_k^{-1})$$

$$\widehat{\mathbf{R}}_{1,...,k}^{(-,-)}(\mathbf{u}) = \widehat{\mathbf{R}}_{1,k}^{(-,-)}(u_1u_k^{-1}) \widehat{\mathbf{R}}_{2,k}^{(-,-)}(u_2u_k^{-1}) \dots \widehat{\mathbf{R}}_{k-1,k}^{(-,-)}(u_{k-1}u_k^{-1})$$

$$\widehat{\mathbf{R}}_{1^*,2^*}^{(+,+)}(x) = \frac{1}{f(x)} \left(\sum_{i,k=1; i \neq k}^{n} \mathbf{F}_i^i \otimes \mathbf{F}_k^k + f(x) \sum_{i=1}^{n} \mathbf{F}_i^i \otimes \mathbf{F}_i^i - g(x^{-1}) \sum_{1 \leq i < k \leq n} \mathbf{F}_i^i \otimes \mathbf{F}_i^k + g(x) \sum_{1 \leq k < i \leq n} \mathbf{F}_k^i \otimes \mathbf{F}_i^k \right)$$

6 Bethe Conditions and Eigenvectors of the Operator H(x)

Let us denote by $\widehat{T}_k^i(x; \mathbf{u})$ and $\widehat{T}_{-k}^{-i}(x; \mathbf{u})$ the operators defined by the relations

$$\widehat{\mathbf{T}}_{0;1,\dots,M}^{(+)}(x;\mathbf{u}) = \sum_{i,k=1}^{n} \mathbf{E}_{i}^{k} \otimes \widehat{T}_{k}^{i}(x;\mathbf{u}),$$

$$\widehat{\mathbf{T}}_{0;1,\dots,M}^{(-)}(x;\mathbf{u}) = \sum_{i,k=1}^{n} \mathbf{E}_{-i}^{-k} \otimes \widehat{T}_{-k}^{-i}(x;\mathbf{u}).$$

75

79

The following statement, which gives part of the Bethe conditions, follows from the previous part.

Theorem 1. Let Φ be common eigenvector of the operators

$$\begin{split} \widehat{H}_{1,\dots,M}^{(+)}(x;\mathbf{u}) &= \mathrm{Tr}_0\Big(\widehat{\mathbf{T}}_{0;1,\dots,M}^{(+)}(x;\mathbf{u})\Big), \\ \widehat{H}_{1,\dots,M}^{(-)}(x;\mathbf{u}) &= \mathrm{Tr}_0\Big(\widehat{\mathbf{T}}_{0;1,\dots,M}^{(-)}(x;\mathbf{u})\Big) \end{split}$$

with eigenvalues $\widehat{E}_{1,\dots,M}^{(+)}(x;\mathbf{u})$ and $\widehat{E}_{1,\dots,M}^{(-)}(x;\mathbf{u})$. If for each $u_k \in \overline{u}$ the relations

$$\widehat{E}_{1,\dots,M}^{(+)}(u_k;\mathbf{u})F(u_k^{-1};\overline{u}_k) = \widehat{E}_{1,\dots,M}^{(-)}(u_k;\mathbf{u})F(u_k;\overline{u}_k^{-1})$$
(3)

are true, then $\left\langle \mathbf{B}_{1,\dots,M}(\mathbf{u}),\,\mathbf{\Phi}\right\rangle$ is the eigenvector of the operator $H(x)=H^{(+)}(x)+$ $H^{(-)}(x)$, where $H^{(\pm)}(x) = \text{Tr}(\mathbf{T}_0^{(\pm)}(x))$ with the eigenvalue

$$E_{1,\dots,M}(x;\mathbf{u}) = \widehat{E}_{1,\dots,M}^{(+)}(x;\mathbf{u})F(x^{-1};\overline{u}) + \widehat{E}_{1,\dots,M}^{(-)}(x;\mathbf{u})F(x;\overline{u}^{-1}).$$

Thus, to find the eigenvectors of the operators H(x), it is sufficient to find common 76 eigenvectors of the operators $\widehat{H}_{1,\dots,M}^{(+)}(x;\mathbf{u})$ and $\widehat{H}_{1,\dots,M}^{(-)}(x;\mathbf{u})$.

Theorem 2. The operators $\widehat{\mathbf{T}}_{0;1,\dots,M}^{(\pm)}(x;\mathbf{u})$ fulfill the RTT–equation

$$\begin{aligned} \mathbf{R}_{0,0'}^{(\epsilon,\epsilon')}(xy^{-1})\widehat{\mathbf{T}}_{0;1,\dots,M}^{(\epsilon)}(x;\mathbf{u})\widehat{\mathbf{T}}_{0';1,\dots,M}^{(\epsilon')}(y;\mathbf{u}) \\ &= \widehat{\mathbf{T}}_{0'\cdot 1}^{(\epsilon')} \quad _{M}(y;\mathbf{u})\widehat{\mathbf{T}}_{0\cdot 1}^{(\epsilon)} \quad _{M}(x;\mathbf{u})\mathbf{R}_{0,0'}^{(\epsilon,\epsilon')}(xy^{-1}) \end{aligned}$$

for any **u** and ϵ , $\epsilon' = \pm$. Thus, they generate RTT-algebra \tilde{A}_n .

Theorem 3. The vector

$$\widehat{\Omega} = \underbrace{\mathbf{f}^1 \otimes \ldots \otimes \mathbf{f}^1}_{M \times} \otimes \underbrace{\mathbf{e}_{-1} \otimes \ldots \otimes \mathbf{e}_{-1}}_{M \times} \otimes \omega$$

is a vacuum vector for representation of the RTT-algebra $\tilde{\mathcal{A}}_n$ with the weights

$$\mu_{1}(x; \mathbf{u}) = \lambda_{1}(x)F(x^{-1}q; \overline{u}),$$

$$\mu_{-1}(x; \mathbf{u}) = \lambda_{-1}(x)F(xq; \overline{u}^{-1}),$$

$$\mu_{k}(x; \mathbf{u}) = \lambda_{k}(x)F(xq^{-1}; \overline{u}^{-1}), \quad k = 2, ..., n,$$

$$\mu_{-k}(x; \mathbf{u}) = \lambda_{-k}(x)F(x^{-1}q^{-1}; \overline{u}), \quad k = 2, ..., n.$$

So to find eigenvectors of the operators H(x) for the RTT-algebra of $U_a(\operatorname{sp}(2n))$ 81 type, it is enough to formulate the Bethe ansatz for the RTT-algebra $\tilde{\mathcal{A}}_n$. 82

Acknowledgements The authors acknowledge financial support by the Ministry of Education, 83 Youth and Sports of the Czech Republic, project no. CZ.02.1.01/0.0/0.0/16 019/0000778. 84

References 85

86 AQ2 87

88

89

90

91

93

96

97

- 1. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: Quantum inverse problem I. Theor. Math. Phys. 40, 688-706 (1979)
- 2. Kulish, P.P., Reshetikhin, N.Yu.: Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A. 16(21983), L591-L596 (1983)
- 3. Burdík, Č., Navrátil, O.: Nested Bethe ansatz for RTT-algebra of so(2n) type. Phys. Atom. Nucl. 81(6), 810-814 (2018)
- 4. Burdík, Č., Navrátil, O.: Nested Bethe ansatz for RTT-algebra of sp(2n) type. Phys. Part. Nucl. 92 **69**(5), 936–942 (2018)
- 5. Burdík, Č., Navrátil, O.: Nested Bethe ansatz for RTT-algebra of sp(4) type. Theor. Math. Phys. 94 **198**(1), 1-16 (2019) 95
 - 6. Burdík, Č., Navrátil, O.: Nested Bethe ansatz for RTT-algebra of sp(4) type (2017). arXiv:1708.05633v1 [math-ph]
- 7. Reshetikhin, N.Yu.: Integrable models of Quantum one-dimensional magnets with O(n) and 98 *Sp*(2*k*) symmetry. Teor. Mat. Fiz. **63**, 347 (1985) 99
- Martins, M.J., Ramos, P.B.: The algebraic Bethe ansatz for rational braid-monoid lattice models. 100 Nucl. Phys. B. 500, 579-620 (1997) 101

Author Queries

Chapter 22

Query Refs.	Details Required	Author's response
AQ1	Per Springer style, both city and country names must be present in the affiliations. Accordingly, we have inserted the city name "Prague" in affiliation "2". Please check and confirm if the inserted city name is correct. If not, please provide us with the correct city name.	
AQ2	References [5] is given in the list but not cited in the text. Please cite them in text or delete them from the list.	

MARKED PROOF

Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

Instruction to printer	Textual mark	Marginal mark
Leave unchanged Insert in text the matter indicated in the margin Delete	··· under matter to remain k / through single character, rule or underline	New matter followed by k or $k \otimes 1$
Substitute character or substitute part of one or more word(s) Change to italics Change to capitals Change to small capitals Change to bold type Change to bold italic Change to lower case Change italic to upright type Change bold to non-bold type	or through all characters to be deleted / through letter or through characters under matter to be changed cunder matter to be changed known in the changed known	of or of _® new character / or new characters /
Insert 'superior' character	/ through character or k where required	y or x under character e.g. y or x
Insert 'inferior' character	(As above)	over character e.g. $\frac{1}{2}$
Insert full stop	(As above)	0
Insert comma	(As above)	,
Insert single quotation marks	(As above)	ý or ý and/or ý or ý
Insert double quotation marks	(As above)	y or y and/or y or y
Insert hyphen	(As above)	н
Start new paragraph	工	
No new paragraph	ب	ر
Transpose	ட	ப
Close up	linking characters	
Insert or substitute space between characters or words	/ through character or k where required	Y
Reduce space between characters or words	between characters or words affected	个